Long-Term Stability of Symmetric Partitioned Linear Multistep Methods

نویسنده

  • Paola Console
چکیده

Long-time integration of Hamiltonian systems is an important issue in many applications – for example the planetary motion in astronomy or simulations in molecular dynamics. Symplectic and symmetric one-step methods are known to have favorable numerical features like near energy preservation over long times and at most linear error growth for nearly integrable systems. This work studies the suitability of linear multistep methods for this kind of problems. It turns out that the symmetry of the method is essential for good conservation properties, and the more general class of partitioned linear multistep methods permits to obtain more favorable long-term stability of the integration. Insight into the long-time behavior is obtained by a backward error analysis, where the underlying one-step method and also parasitic solution components are investigated. In this way one approaches a classification of problems, for which multistep methods are an interesting class of integrators when long-time integration is important. Numerical experiments confirm the theoretical findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

Resonances and instabilities in symmetric multistep methods

The symmetric multistep methods developed by Quinlan and Tremaine (1990) are shown to suffer from resonances and instabilities at special stepsizes when used to integrate nonlinear equations. This property of symmetric multistep methods was missed in previous studies that considered only the linear stability of the methods. The resonances and instabilities are worse for high-order methods than ...

متن کامل

A new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrodinger equation and related IVPs with oscillating solutions

A new two-step implicit linear Obrechkoff twelfth algebraic order method with vanished phase-lag and its first, second, third and fourth derivatives is constructed in this paper. The purpose of this paper is to develop an efficient algorithm for the approximate solution of the one-dimensional radial Schrodinger equation and related problems. This algorithm belongs in the category of the multist...

متن کامل

A technique to construct symmetric variable-stepsize linear multistep methods for second-order systems

Some previous works show that symmetric fixedand variablestepsize linear multistep methods for second-order systems which do not have any parasitic root in their first characteristic polynomial give rise to a slow error growth with time when integrating reversible systems. In this paper, we give a technique to construct variable-stepsize symmetric methods from their fixed-stepsize counterparts,...

متن کامل

Reducing round-off errors in symmetric multistep methods

Certain symmetric linear multistep methods have an excellent long-time behavior when applied to second order Hamiltonian systems with or without constraints. For high accuracy computations round-off can be the dominating source of errors. This article shows how symmetric multistep methods should be implemented, so that round-off errors are minimized and propagate like a random walk.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011